Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 156-163, 2024.
Article in Chinese | WPRIM | ID: wpr-1003420

ABSTRACT

ObjectiveTo screen the differential markers by analyzing volatile components in Dalbergia odorifera and its counterfeits, in order to provide reference for authentication of D. odorifera. MethodThe volatile components in D. odorifera and its counterfeits were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the GC conditions were heated by procedure(the initial temperature of the column was 50 ℃, the retention time was 1 min, and then the temperature was raised to 300 ℃ at 10 ℃ for 10 min), the carrier gas was helium, and the flow rate was 1.0 mL·min-1, the split ratio was 10∶1, and the injection volume was 1 mL. The MS conditions used electron bombardment ionization(EI) with the scanning range of m/z 35-550. The compound species were identified by database matching, the relative content of each component was calculated by the peak area normalization method, and principal component analysis(PCA), orthogonal partial least squares-discrimination analysis(OPLS-DA) and cluster analysis were performed on the detection results by SIMCA 14.1 software, and the differential components of D. odorifera and its counterfeits were screened out according to the variable importance in the projection(VIP) value>2 and P<0.05. ResultA total of 26, 17, 8, 22, 24 and 7 volatile components were identified from D. odorifera, D. bariensis, D. latifolia, D. benthamii, D. pinnata and D. cochinchinensis, respectively. Among them, there were 11 unique volatile components of D. odorifera, 6 unique volatile components of D. bariensis, 3 unique volatile components of D. latifolia, 6 unique volatile components of D. benthamii, 8 unique volatile components of D. pinnata, 4 unique volatile components of D. cochinchinensis. The PCA results showed that, except for D. latifolia and D. cochinchinensis, which could not be clearly distinguished, D. odorifera and other counterfeits could be distributed in a certain area, respectively. The OPLS-DA results showed that D. odorifera and its five counterfeits were clustered into one group each, indicating significant differences in volatile components between D. odorifera and its counterfeits. Finally, a total of 31 differential markers of volatile components between D. odoriferae and its counterfeits were screened. ConclusionHS-GC-MS combined with SIMCA 14.1 software can systematically elucidate the volatile differential components between D. odorifera and its counterfeits, which is suitable for rapid identification of them.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 173-179, 2023.
Article in Chinese | WPRIM | ID: wpr-973759

ABSTRACT

ObjectiveTo establish the identification method of Dalbergiae Odoriferae Lignum(DOL) and its counterfeits by nuclear magnetic resonance hydrogen spectrum(1H-NMR) combined with multivariate statistical analysis. Method1H-NMR spectra of DOL and its counterfeits were obtained by NMR, and the full composition information was established and transformed into a data matrix, and the detection conditions were as follows:taking dimethyl sulfoxide-d6(DMSO-d6) containing 0.03% tetramethylsilane(TMS) as the solvent, the constant temperature at 298 K(1 K=-272.15 ℃), pulse interval of 1.00 s, spectrum width of 12 019.23 Hz, the scanning number of 16 times, and the sampling time of 1.08 s. Similarity examination and hierarchical cluster analysis(HCA) were performed on the data matrix of DOL and its counterfeits, and orthogonal partial least squares-discriminant analysis(OPLS-DA) was used to analyze the data matrix and identify the differential components between them. In the established OPLS-DA category variable value model, the category variable value of DOL was set as 1, and the category variable value of the counterfeits was set as 0, and the threshold was set as ±0.3, in order to identify the commercially available DOL. The OPLS-DA score plot was used to determine the types of counterfeits in commercially available DOL, and it was verified by thin layer chromatography(TLC). ResultThe results of similarity analysis and HCA showed that there was a significant difference between DOL and its counterfeits. OPLS-DA found that the differential component between DOL and its counterfeits was trans-nerolidol. The established category variable value model could successfully identify the authenticity of the commercially available DOL. The results of the OPLS-DA score plot showed that there were heartwood of Dalbergia pinnata and D. cochinchinensis in the commercially available DOL, and were consistent with the TLC verification results. ConclusionThere is a phenomenon that heartwood of D. pinnata and D. cochinchinensis are sold as DOL in the market. 1H-NMR combined with multivariate statistical analysis can effectively distinguish DOL and its counterfeits, which can provide a reference for the identification of them.

3.
China Journal of Chinese Materia Medica ; (24): 1568-1577, 2023.
Article in Chinese | WPRIM | ID: wpr-970629

ABSTRACT

A gas chromatography-triple quadrupole mass spectrometry(GC-MS) method was established for the simultaneous determination of eleven volatile components in Cinnamomi Oleum and the chemical pattern recognition was utilized to evaluate the quality of essential oil obtained from Cinnamomi Fructus medicinal materials in various habitats. The Cinnamomi Fructus medicinal materials were treated by water distillation, analyzed using GC-MS, and detected by selective ion monitoring(SIM), and the internal standards were used for quantification. The content results of Cinnamomi Oleum from various batches were analyzed by hierarchical clustering analysis(HCA), principal component analysis(PCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) for the statistic analysis. Eleven components showed good linear relationships within their respective concentration ranges(R~2>0.999 7), with average recoveries of 92.41%-102.1% and RSD of 1.2%-3.2%(n=6). The samples were classified into three categories by HCA and PCA, and 2-nonanone was screened as a marker of variability between batches in combination with OPLS-DA. This method is specific, sensitive, simple, and accurate, and the screened components can be utilized as a basis for the quality control of Cinnamomi Oleum.


Subject(s)
Gas Chromatography-Mass Spectrometry , Plant Oils , Oils, Volatile , Drugs, Chinese Herbal/analysis , Cluster Analysis
4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 177-184, 2023.
Article in Chinese | WPRIM | ID: wpr-962639

ABSTRACT

ObjectiveTo compare the effects of different processing methods in ancient and modern times on the chemical components of Lilii Bulbus decoction, and to provide experimental support for the origin processing, decoction piece processing and clinical application of this herb. MethodUltra high performance liquid chromatography tandem quadrupole electrostatic field orbitrap high resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for structural identification of the compounds using excimer ions, secondary MS and characteristic fragment ions, and referring to relevant literature and database information. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) were used to screen the main differential components, the differential components were quantitatively studied by high performance liquid chromatography(HPLC), in order to compare the types and contents of chemical components in the decoction of different processing products of Lilii Bulbus. ResultA total of 24 chemical components were identified from the decoction of different processed products of Lilii Bulbus, water extract and scalding liquid of fresh Lilii Bulbus, including 17 phenols, 5 saponins and 2 alkaloids. Compared with the fresh Lilii Bulbus decoction, the contents of regaloside A, p-coumaric acid, colchicine and other components in the decoction of dry Lilii Bulbus processed by scalding method decreased, the content of regaloside C in the decoction of dry Lilii Bulbus processed by steaming method decreased, and the contents of regaloside A and regaloside C in the decoction of fresh Lilii Bulbus processed by water immersion also decreased. Compared with the decoction of dry Lilii Bulbus processed by scalding method, the overall content of components in the fresh Lilii Bulbus decoction and the decoction of fresh Lilii Bulbus processed by water immersion was higher, the contents of components in the decoction of dry Lilii Bulbus processed by steaming method was higher, except for the slightly lower content of regaloside C. ConclusionDifferent processing processes have a certain effect on the types and contents of chemical components in Lilii Bulbus decoction. Scalding process is beneficial to the preservation of Lilii Bulbus, but can cause the loss of effective components. Compared with scalding method, steaming method can prevent browning of Lilii Bulbus and reduce the loss of its active ingredients. The processing method of removing foam after overnight immersion proposed by ZHANG Zhongjing may be more conducive to the treatment of Baihe disease, which can provide reference for the clinical rational application and mechanism research of different processed products of Lilii Bulbus.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 147-155, 2022.
Article in Chinese | WPRIM | ID: wpr-943095

ABSTRACT

ObjectiveTo analyze changes of the chemical composition in Euodiae Fructus before and after processing with Coptidis Rhizoma decoction, so as to provide scientific basis for elucidating the processing mechanism of this decoction pieces. MethodUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed on a Titank C18 column (2.1 mm×100 mm, 1.8 μm), the mobile phase was 0.1% formic acid aqueous solution-acetonitrile for gradient elution, the column temperature was set at 40 ℃, the flow rate was 0.25 mL·min-1. Electrospray ionization (ESI) was used to scan in positive and negative ion modes, and the scanning range was m/z 50-1 250. The chemical constituents in Euodiae Fructus were identified before and after processing by reference substance comparison, database matching and literature reference, and MarkerView™ 1.2.1 software was used to normalize the obtained data, SIMCA-P 14.1 software was employed to perform principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) on MS data of raw and processed products to screen the differential components before and after processing. ResultA total of 50 compounds were identified, including 48 kinds of stir-fried products with Coptidis Rhizoma decoction and 44 kinds of raw products. After processing, six compounds were added, including danshensu, noroxyhydrastinine, oxyberberine, 13-methylberberrubine, protopine and canadine. However, two kinds of compounds, including (S)-7-hydroxysecorutaecarpine and wuchuyuamide Ⅱ, were not detected after processing. In general, after processing, the overall contents of phenolic acids and flavonoids decreased significantly, the overall content of limonoids increased, and the overall content of alkaloids did not decrease insignificantly. The results of PCA and OPLS-DA showed that there were significant differences in the composition and content of the chemical components of Euodiae Fructus before and after processing, and a total of 12 variables such as quercetin, dihydrorutaecarpine and dehydroevodiamine were obtained by screening. ConclusionEuodiae Fructus stir-fried with Coptidis Rhizoma decoction mainly contains phenolic acids, flavonoids, limonoids and alkaloids. The composition and content of the chemical components have some changes before and after processing. The addition of processing excipients and hot water immersion are the main reasons for the difference, which can provide experimental basis for interpretation of the processing mechanism of this characteristic processed products of Euodiae Fructus.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 145-152, 2022.
Article in Chinese | WPRIM | ID: wpr-940807

ABSTRACT

ObjectiveOn the basis of sensory evaluation, the changes of volatile components in gecko before and after processing were compared, and the odor correction effect of different processing methods of gecko was discussed. MethodRaw products, fried yellow products, vinegar processed products, wine processed products, talcum powder scalding products and white wine sprayed products after scalding talcum powder of gecko were prepared, and 10 odor assessors were invited to evaluate the 6 samples in turn by sensory evaluation. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and relative odor activity value (ROAV) were used to analyze the key odor components, and multivariate statistical methods were used to analyze the difference of volatile components between raw and processed products of gecko. Taking water-soluble extract and protein contents as internal indicators, sensory evaluation score and content ranking of differential components as external indicators, and assigning a weight of 0.25 to them respectively, the comprehensive scores of raw products and processed products of gecko were calculated to evaluate the odor correction effect of each processing method. ResultThe average sensory evaluation scores of the raw products, fried yellow products, vinegar processed products, wine processed products, talcum powder scalding products and white wine sprayed products after scalding talcum powder of gecko were 1.6, 5.2, 6.2, 6.1, 7.2 and 8.0, respectively. ROAV results showed that key components affecting odor of gecko were 2-ethyl-3,5-dimethylpyrazine, isovaleraldehyde, trimethylamine, 1-octen-3-ol, n-octanal, nonanal, 2-methylnaphthalene, γ-octanolide, 2-heptanone and phenol. Principal component analysis (PCA) significantly distinguished raw products from processed products. Orthogonal partial least squares-discriminant analysis (OPLS-DA) results showed that there were 16, 13, 16, 16, 16 differential components between raw products, fried yellow products, vinegar processed products, wine processed products, talcum powder scalding products and white wine sprayed products after scalding talcum powder of gecko. Among these differential components, there were 4 common components, namely, the contents of different odor components (2-methylnaphthalene and 2-ethyl-p-xylene) decreased, while the contents of different flavor components (2-decanone and 2,3,5-trimethylpyrazine) increased. The comprehensive scoring results showed that the odor correction effect of each processed products was in the order of talcum powder scalding products>wine processed products>vinegar processed products>fried yellow products>white wine sprayed products after scalding talcum powder. ConclusionTalcum powder scalding is a better method to improve the odor of gecko, and it can provide an experimental basis for the processing of gecko to correct the odor.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 154-161, 2022.
Article in Chinese | WPRIM | ID: wpr-940187

ABSTRACT

ObjectiveTo identify the chemical constituents of Alismatis Rhizoma before and after processing with salt-water by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and to investigate the changes of terpenoids in Alismatis Rhizoma before and after processing with salt-water. MethodUPLC-Q-TOF-MS was used to detect with 0.1% formic acid aqueous solution (A)-acetonitrile (B)as mobile phase for gradient elution (0-0.01 min, 20%B; 0.01-5 min, 20%-40%B; 5-40 min, 40%-95%B; 40-42 min, 95%B; 42-42.1 min, 95%-20%B; 42.1-45 min, 20%B), electrospray ionization (ESI) was selected for collection and detection in positive ion mode with the scanning range of m/z 100-1 250 and ion source temperature at 500 ℃. The data were analyzed by PeakView 1.2.0.3, the components were identified according to the primary and secondary MS data, and combined with the reference substance and literature. After normalized treatment by MarkerView 1.2.1, the MS data were analyzed by principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), and then the differential components before and after processing were screened. The content changes of differential components were analyzed according to the relative peak area. ResultA total of 30 components were identified under positive ion mode, including 28 prototerpene triterpenes and 2 sesquiterpenes. The results of PCA and OPLS-DA showed that there were significant differences in components from Alismatis Rhizoma before and after processing with salt-water, and 10 differential components (alisol B 23-acetate, alisol I, alismol, 11-deoxy-alisol B 23-acetate, alisol B, alisol C, 11-deoxy-alisol B, alisol G, 11-deoxy-alisol C and alisol A) were screened, and the contents of alisol G and alisol A decreased significantly after processing. ConclusionUPLC-Q-TOF-MS can comprehensively and accurately identify the chemical constituents in raw and salt-processed products of Alismatis Rhizoma. It takes a great difference in the contents of chemical constituents before and after processing, and the difference of substituents is the main reason for this differences, which can provide reference for determining the material basis of efficacy changes of Alismatis Rhizoma before and after processing with salt-water.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 154-161, 2022.
Article in Chinese | WPRIM | ID: wpr-940155

ABSTRACT

ObjectiveTo identify the chemical constituents of Alismatis Rhizoma before and after processing with salt-water by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and to investigate the changes of terpenoids in Alismatis Rhizoma before and after processing with salt-water. MethodUPLC-Q-TOF-MS was used to detect with 0.1% formic acid aqueous solution (A)-acetonitrile (B)as mobile phase for gradient elution (0-0.01 min, 20%B; 0.01-5 min, 20%-40%B; 5-40 min, 40%-95%B; 40-42 min, 95%B; 42-42.1 min, 95%-20%B; 42.1-45 min, 20%B), electrospray ionization (ESI) was selected for collection and detection in positive ion mode with the scanning range of m/z 100-1 250 and ion source temperature at 500 ℃. The data were analyzed by PeakView 1.2.0.3, the components were identified according to the primary and secondary MS data, and combined with the reference substance and literature. After normalized treatment by MarkerView 1.2.1, the MS data were analyzed by principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), and then the differential components before and after processing were screened. The content changes of differential components were analyzed according to the relative peak area. ResultA total of 30 components were identified under positive ion mode, including 28 prototerpene triterpenes and 2 sesquiterpenes. The results of PCA and OPLS-DA showed that there were significant differences in components from Alismatis Rhizoma before and after processing with salt-water, and 10 differential components (alisol B 23-acetate, alisol I, alismol, 11-deoxy-alisol B 23-acetate, alisol B, alisol C, 11-deoxy-alisol B, alisol G, 11-deoxy-alisol C and alisol A) were screened, and the contents of alisol G and alisol A decreased significantly after processing. ConclusionUPLC-Q-TOF-MS can comprehensively and accurately identify the chemical constituents in raw and salt-processed products of Alismatis Rhizoma. It takes a great difference in the contents of chemical constituents before and after processing, and the difference of substituents is the main reason for this differences, which can provide reference for determining the material basis of efficacy changes of Alismatis Rhizoma before and after processing with salt-water.

9.
China Journal of Chinese Materia Medica ; (24): 1587-1594, 2022.
Article in Chinese | WPRIM | ID: wpr-928088

ABSTRACT

In this study, we analyzed the composition and content of 25 free amino acids in 32 batches of different forms of Cervi Cornu Pantotrichum(CCP; one-branched, two-branched, and three-branched) from 15 producing areas. The clustering analysis and orthogonal partial least squares discriminant analysis(OPLS-DA) were performed based on the content of 25 free amino acids. Potential differential metabolites were identified based on VIP value. The results showed that there were 25 free amino acids in CCP, and the average content of essential, non-essential, and total amino acids was 6.13, 32.99, and 39.12 mg·g~(-1), respectively. The clustering analysis and OPLS-DA demonstrated that 25 free amino acids had different content among the three forms of CCP, of which two-branched CCP samples were separately gathered into a group. Five differential components, including glutamic acid, tryptophan, ornithine, γ-aminobutyric acid, and hydroxylysine, were screened out as potential quality markers for the identification of different forms of CCP. This study provides a theoretical basis for the quality evaluation, processing, and utilization of different forms of CCP.


Subject(s)
Animals , Amino Acids/analysis , Cornus , Deer , Gastropoda , Glutamic Acid
10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 12-20, 2021.
Article in Chinese | WPRIM | ID: wpr-906325

ABSTRACT

Objective:To establish the ultraperformance liquid chromatography (UPLC) fingerprint of Pipa Qingfeiyin substance benchmark, and to establish a quantitative analysis method for simultaneous determination of the contents of five index components, so as to provide reference for the quality control and evaluation of this famous classical formula. Method:ACQUITY UPLC<sup>®</sup> CSH<sup>TM</sup> C<sub>18</sub> column (2.1 mm×100 mm, 1.7 μm) was used with mobile phase of acetonitrile (A)-0.1% formic acid aqueous solution (B) for gradient elution (0-7 min, 5%-7%A; 7-11 min, 7%-8%A; 11-22 min, 8%-14%A; 22-30 min, 14%-15%A; 30-35 min, 15%-25%A; 35-42 min, 25%-40%A; 42-45 min, 40%-50%A; 45-50 min, 50%-60%A), the flow rate was 0.35 mL·min<sup>-1</sup>, the column temperature was 25 ℃, the detection wavelengths were 278 nm and 248 nm. UPLC fingerprints of 15 batches of Pipa Qingfeiyin substance benchmark were established, and the "Similarity Evaluation System of Chromatographic Fingerprint of Traditional Chinese Medicine" software (2012 edition) was used for similarity analysis, and the common peaks were assigned. Cluster analysis (CA), principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to evaluate the fingerprint data. UPLC fingerprint method was used to simultaneously determine the contents of five components in the substance benchmark. Result:The method validation of fingerprint and determination method was good, the similarities between 15 batches of Pipa Qingfeiyin substance benchmark and their control fingerprint were ≥0.997, 23 common peaks were identified and 11 chromatographic peaks were identified. CA, PCA and OPLS-DA divided 15 batches of the substance benchmark into two groups. The linear relationship of phellodendrine hydrochloride, chlorogenic acid, berberine hydrochloride, palmatine hydrochloride and ammonium glycyrrhizinate was good in a certain range of concentration (<italic>R</italic><sup>2</sup>>0.999), their average recovery was 96.47%-101.16%, and the contents of these five components in the substance benchmark were 0.87-2.00, 1.53-5.95, 18.45-33.97, 3.87-6.29, 1.02-4.12 mg·g<sup>-1</sup>, respectively. Conclusion:The established UPLC fingerprint and multi-index component content determination methods have strong specificity, good resolution and high sensitivity, it can be characterized except for the Ginseng Radix et Rhizoma flavor, which can provide reference for the quality control and evaluation of Pipa Qingfeiyin compound preparation.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 174-180, 2021.
Article in Chinese | WPRIM | ID: wpr-905972

ABSTRACT

Objective:To establish the high performance liquid chromatography (HPLC) fingerprint of Citri Sarcodactylis Fructus, and to search for makers to characterize the quality difference of Citri Sarcodactylis Fructus from different origins coupled with chemometrics. Method:The analysis was performed on a Thermo Hypersil GOLD C<sub>18</sub> column (4.6 mm×250 mm, 5 μm) with mobile phase consisted of acetonitrile-0.05% phosphoric acid solution for gradient elution, and the detection wavelength was set at 254 nm. A total of 31 batches of samples were analyzed to establish the HPLC fingerprint of Citri Sarcodactylis Fructus. Similarity evaluation was performed by Traditional Chinese Medicine Chromatographic Fingerprint Similarity Evaluation System (2012 edition) to confirm the common peaks, which were identified by comparison of reference substances. On the basis, chemometrics methods were used to analyze and evaluate the quality of Citri Sarcodactylis Fructus from different origins. At the same time, 3 batches of 5 species of decoction pieces from the genus <italic>Citrus</italic> in the family Rutaceae, including Citri Sarcodactylis Fructus, Aurantii Fructus Immaturus, Aurantii Fructus, Citri Reticulatae Pericarpium Viride and Citri Reticulatae Pericarpium, were randomly collected for evaluating the effectiveness and reliability of the established HPLC fingerprint of Citri Sarcodactylis Fructus. Result:HPLC fingerprint of Citri Sarcodactylis Fructus was established and 22 common peaks were identified. And seven common peaks among them were identified as 6,7-dimethoxycoumarin, diosmin, hesperidin, byakangelicin, 5,7-dimethoxycoumarin, bergapten and oxypeucedanin. Except for 2 batches of samples, the similarities of fingerprints between other 29 batches of samples were >0.9. The 31 batches of Citri Sarcodactylis Fructus were basically divided into 3 groups by cluster analysis and principal component analysis, which were consistent with the classification of three different producing areas. Eight differential markers were screened by orthogonal partial least squares discriminant analysis and four of them (5,7-dimethoxycoumarin, bergapten, 6,7-dimethoxycoumarin and diosmin) were identified by reference substances. Similarity evaluation of 5 species of decoction pieces from genus <italic>Citrus</italic> in the family Rutaceae was carried out by taking the reference fingerprint of Citri Sarcodactylis Fructus as treference chromatogram, similarity of Citri Sarcodactylis Fructus decoction pieces was 0.892-0.977, and the similarities of the other 4 kinds of decoction pieces were 0.215-0.517. Conclusion:The established fingerprint method is reasonable, effective and accurate for quality control of Citri Sarcodactylis Fructus, the characterization information is more comprehensive combined with chemometrics.

12.
China Journal of Chinese Materia Medica ; (24): 1410-1416, 2021.
Article in Chinese | WPRIM | ID: wpr-879046

ABSTRACT

The extract rates, multicomponent content and fingerprint were determined in this study to investigate the quality diffe-rence between standard decoction of raw Paeoniae Radix Alba and fried Paeoniae Radix Alba. UPLC fingerprint was established for 17 batches of standard decoction of raw and fried Paeoniae Radix Alba, and the contents of gallic acid, catechin, albiflorin, paeoniflorin and benzoyl paeoniflorin were determined. The peak areas of standard decoction were analyzed by the independent t-test and orthogonal partial least squares discriminant analysis. There was no significant difference in extract rates between the standard decoction of raw and fried Paeoniae Radix Alba. After fried processing, the content of albiflorin increased by 0.26%, while the contents of gallic acid, catechin, paeoniflorin and benzoyl paeoniflorin decreased by 13.04%, 27.97%, 10.30% and 18.79% respectively. There were 14 common peaks in the fingerprint of standard decoction of raw Paeoniae Radix Alba, and 16 common peaks in the fried Paeoniae Radix Alba. Peak 1 and peak 3 were new ones after processing, among which the peak 3 was 5-hydroxymethylfurfural. The results showed that peak 1, peak 3, peak 11 and peak 15 were the key compounds to distinguish standard decoction of raw and fried Paeoniae Radix Alba. In conclusion, this method is stable and can be used for the study of quantity transfer and quality control in the preparation process of standard decoction, granules and other dosage forms for raw and fried Paeoniae Radix Alba, providing reference for the identification of raw and fried Paeoniae Radix Alba and related preparations.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Paeonia , Quality Control , Reference Standards
13.
Chinese Traditional and Herbal Drugs ; (24): 3284-3291, 2020.
Article in Chinese | WPRIM | ID: wpr-846367

ABSTRACT

Objective: To identify and comprehensively evaluate Cynomorium songaricum from different producing areas in order to provide reference for the quality evaluation of C. songaricum and the determination of the suitability of the origin. Methods: A total of 40 samples from five provinces (regions) were collected to measure the content of gallic acid, protocatechuic acid, catechins, total polysaccharides, total flavonoids, Na, K, Ca, Mg, Fe, Zn, Mn, Co, Sr, Ni, Ag, Ba, Ti, Cu, Pb, Cr, Cd, As, and Hg. The data reflecting the quality of C. songaricum were analyzed by orthogonal partial least squares discriminant analysis (OPLS-DA) and entropy weight TOPSIS analysis. Results: The contents of Mn, Zn, Co, catechin, Pb, Cr, Ca, Ti, total flavonoids, protocatechuic acid, Mg and Cu in C. songaricum are important for distinguishing different producing areas. The quality of C. songaricum in Inner Mongolia was the best in all provinces (regions), followed by Gansu, Ningxia, Xinjiang, and Qinghai Provinces. Conclusion: The results of OPLS-DA combined with entropy weight TOPSIS analysis are reasonable, objective and effective, and can be applied to the comprehensive evaluation of multiple indicators of C. songaricum.

14.
China Journal of Chinese Materia Medica ; (24): 3183-3190, 2020.
Article in Chinese | WPRIM | ID: wpr-827999

ABSTRACT

This work is to establish the fingerprint of Astragalus membranaceus var. mongholicus by HPLC-ELSD method, and to analyze the simulated wildness degree of A. membranaceus var. mongholicus in the genuine region of Inner Mongolia, Ningxia and Gansu. Compared with wild A. membranaceus var. mongholicus, the quality differences of A. membranaceus var. mongholicus in the genuine region were analyzed by identification of chromatographic peaks and similarity evaluation, cluster analysis(CA), principal components analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA). HPLC fingerprints of A. membranaceus var. mongholicus in different genuine regions are established. The qualitative analysis of mass spectrometry identified 18 components. The similarity evaluation shows that the similarity of 32 batches of A. membranaceus var. mongholicus samples was 0.688-0.993. Among them, the similarity of samples in Shanxi, Inner Mongolia, Ningxia is 0.688-0.993, 0.835-0.989, 0.934-0.988, respectively and the similarity of samples in Gansu is 0.729-0.876 except No. 25 sample. The results of CA show that the samples of A. membranaceus var. mongholicus can be grouped into four categories according to the production area except the No. 11 and No. 25 samples. The results of PCA indicate that 32 batches of A. membranaceus var. mongholicus samples can be clustered according to quality and origin, and the quality of A. membranaceus var. mongholicus in Inner Mongolia is the closest to the wild breed. The results of OPLS-DA indicate that there are six components that can distinguish the wild and domestic A. membranaceus var. mongholicus, which are malonylastragaloside Ⅰ, astragaloside Ⅰ, calycosin-7-O-β-D-glycoside-6″-O-malonate, calycosin-7-O-β-D-glycoside, formononetin-7-O-β-D-glycoside-6″-O-malonate, and astrapterocarpan-3-O-β-D-glycoside-6″-O-malonate. The established method can be used to analyze differences between A. membranaceus var. mongholicus origin and planting environment, and can provide references for the protection and replacement of wild A. membranaceus var. mongholicus resources, and the cultivation, processing and production of A. membranaceus var. mongholicus.


Subject(s)
Astragalus propinquus , China
15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 16-22, 2020.
Article in Chinese | WPRIM | ID: wpr-873079

ABSTRACT

Objective::To develop high performance liquid chromatography-diode array detector (HPLC-DAD) wavelength switching for simultaneously determining the contents of inosine, loganic acid, chlorogenic acid, amygdalin, hydroxysafflor yellow A, gentiopicroside, ferulic acid and liquiritin in 15 batches of material benchmarks of Shentong Zhuyutang. Method::The quantitative analysis was carried out on a Thermo Hypersil GOLD C18 column (4.6 mm×250 mm, 5 μm) with mobile phase of acetonitrile-0.1%phosphoric acid aqueous solution for gradient elution, the flow rate was 1.0 mL·min-1, the detection wavelengths were set as 248 nm (0-11 min, inosine), 235 nm (11-14 min, loganic acid), 324 nm (14-16 min, chlorogenic acid), 220 nm (16-19 min, amygdalin and hydroxysafflor yellow A), 274 nm (19-26 min, gentiopicroside), 247 nm (26-54 min, ferulic acid and liquiritin), the column temperature was maintained at 25 ℃. According to the contents of eight active components in 15 batches of material benchmarks, orthogonal partial least squares discriminant analysis (OPLS-DA) in SIMCA 14.1 was used to evaluate the quality difference of each batch of samples. Result::Each component had good separations, the linear ranges of the above 8 components were 2.1-67.2, 1.812 5-58, 1.937 5-62, 5.212 5-166.8, 8.45-270.4, 7.075-226.4, 1.775-56.8, 3.875-124 mg·L-1, respectively (r≥0.999 6). The average recoveries of them were 99.23%, 100.09%, 99.33%, 98.85%, 99.15%, 98.75%, 99.42%, 98.96%, respectively (RSD<2%). The contents of the above eight components in 15 batches of material benchmarks were 0.183 5-0.250 3, 0.173 1-0.265 3, 0.069 5-0.169 8, 0.959 2-1.458 2, 1.905 4-2.553 3, 0.933 3-1.997 5, 0.084 6-0.143 4, 0.212 5-0.704 3 mg·g-1, respectively. Liquiritin, ferulic acid, gentiopicroside and hydroxysafflor yellow A were determined to have significant impact on the quality of different batches of material benchmarks of Shentong Zhuyutang through OPLS-DA. Conclusion::The established method for simultaneous determination of multi-components is reliable, simple and in line with the requirements of methodological verification. It is suitable for the quality control of research and development of compound preparations of Shentong Zhuyutang.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 130-136, 2020.
Article in Chinese | WPRIM | ID: wpr-873030

ABSTRACT

Objective:To improve the quality standard of Shenwei Gubi tablets, and to explore the reasons for the great difference in the contents of quality control index components between batches of this product. Method:The fingerprint of this product was established by HPLC, the determination was performed on Diamonsil C18 column (4.6 mm×250 mm, 5 μm) with acetonitrile (A)-0.1% phosphoric acid solution (B) for gradient elution (0-5 min, 10%A; 5-15 min, 10%-12%A; 15-30 min, 12%-26%A; 30-43 min, 26%-31%A, 43-50 min, 31%-40%A, 50-70 min, 40%-55%A; 70-84 min, 55%-72.5%A) as the mobile phase at detection wavelength of 230 nm. The orthogonal partial least squares-discriminant analysis-variable importance in the projection (OPLS-DA-VIP) map was drawn with the common peak as the independent variable. The contribution of 26 common peaks to the fingerprint differences among different batches of this product was quantified. By searching for the chromatographic peaks with great differences, combined with relevant literature, the components related to the clinical indications of the product were screened out and their contents were determined by specificity experiment, and the quantitative indicators were finally selected. HPLC-doide array detector (DAD) was employed to determine the contents of the above preferred indexes with detection wavelengths of 236, 276, 230, 322 nm, other conditions were the same as HPLC fingerprint detection method. Result:A total of 26 common peaks were calibrated on the HPLC fingerprint of Shenwei Gubi tablets. The similarity between the fingerprint of each batch samples and the reference fingerprint was≥0.950. Loganic acid, gentiopicroside, paeoniflorin and osthole were optimized as the quantitative indicators of this product, their average contents were 161.02, 401.80, 255.54, 80.68 μg·g-1. Conclusion:The established fingerprint and multi-index quantitative analysis method are stable and reliable, and can be used for quality control of Shenwei Gubi tablets. Difference in contents of quality control components between batches of raw materials and the imperfect quality control method of intermediates in the production process are the main reasons for the great difference in the contents of quality control indicators between batches of this product.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 150-155, 2019.
Article in Chinese | WPRIM | ID: wpr-802045

ABSTRACT

Objective:To characterize and compare the chemical information of four extracts of Qingre Chushi (QRCS) decoction by liquid chromatography-mass spectrometry (LC-MS), and combine the chemical information of the four extracts with their results of anti-inflammatory effect for a multivariate statistical analysis, in order to identify the compounds directly relating to the anti-inflammatory effects of QRCS decoction. Method:Four extracts of QRCS decoction were characterized by UPLC-Q-TOF-MS:①ethanol extract+water extract,② ethanol extract+supernatant after water extraction and alcohol precipitation, ③ ethanol extract+precipitation after water extraction and alcohol precipitation,and ④ standard decoction. On the basis of the results of inhibition of the four above extracts on xylene-induced ear swelling in mice,multivariate statistical analysis[principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA)] were carried out to lock the chromatographic peaks with significant differences between group ① (the best pharmacological action group) and group ④ (standard decoction group). According to the accuracy of quasi-molecular ion and fragment ion data,and the reference materials and literature data,those chromatographic peaks were identified. Result:PCA could cluster the four extracts of QRCS decoction,and the differences between groups was reflected in the distance between groups. Group ④ (standard decoction) had the most significant differences with the other three groups, especially in the first principal component; group ① (ethanol extract+water extract),group ② (ethanol extract+supernatant after water extraction and ethanol precipitation) and group ③ (ethanol extract+precipitation after water extraction and ethanol precipitation) had certain differences in the second principal component. OPLS-DA was used to compare group ① (the best pharmacological action group) and group ④ (standard decoction group). Eleven chromatographic peaks with great contribution and high reliability to group differences,were identified as gentiopicrin,skimmin,baicalin,baicalin isomer,wogonoside,5,6,7-trihydroxy-8-methoxyflavone-7-O-glucurodonaldehyde,5,6-dihydroxy-6,8,2',3'-tetramethoxyflavone,salicin-6-C-arabinose-8-C-glucoside,plantamajoside and glycyrrhizic acid. Conclusion:In the mode of pectrum-effect combination, this study explores and identifies compounds relating to the anti-inflammatory effect of QRCS decoction,so as to provide the basis for screening the extraction and purification process and optimizing the formulation of preparation of Qingre Chushi decoction.

18.
Academic Journal of Second Military Medical University ; (12): 1223-1230, 2019.
Article in Chinese | WPRIM | ID: wpr-838078

ABSTRACT

Objective: To explore the surface-enhanced Raman spectroscopy (SERS) difference of key female fertility indicators, estradiol (E2), anti-Müllerian hormone (AMH) and antral follicle count (AFC) in serum samples of healthy and infertile women, and the possibility of their application in preliminary screening of clinical female fertility. Methods: A total of 236 serum samples of healthy and infertile women of childbearing age were collected from Reproductive Medical Center of the First Affliated Hospital with Nanjing Medical University. The ages of all subjects ranged from 22 to 49 years old, with an average age of (30.8 ± 5.1) years old. The samples were divided into high E2 value group (>5 000 pmol/L, 78 cases) and low E2 value group ( 14, 68 cases) and low AFC value group (<7, 34 cases). Serum SERS analysis was established and Raman spectra of each group were detected. Orthogonal partial least squares discriminant analysis (OPLS-DA), receiver operating characteristic (ROC) curve and permutation test were used to analyze the signals. Results: The Raman spectrum morphology of serum samples was similar between high and low E2 value groups, high and low AMH value groups, and high and low AFC value groups, but the spectral peak intensity of the three indicators was different between the high and low value groups. In the OPLS-DA model, there was an obvious clustering trend in E2, AMH and AFC between the high and low value groups, and the areas under ROC curve were 0.996 and 0.996, 0.995 and 0.995, and 1 and 1 in high and low E2 value groups, high and low AMH value groups, and high and low AFC value groups, respectively. Conclusion: SERS has a potential to be used in the primary screening of female fertility. Serum SERS profle as an auxiliary method for early diagnosis of infertility is worthy of further study.

19.
Chinese Traditional and Herbal Drugs ; (24): 5448-5454, 2019.
Article in Chinese | WPRIM | ID: wpr-850698

ABSTRACT

Objective: To establish the fingerprints of nucleosides in Cervi Cornu Pantotrichum (CCP) pieces by HPLC method, perform cluster analysis and principal component analysis (PCA), and compare the differences of six nucleosides in CCP pieces. Methods: A total of 16 batches of CCP pieces from different origins were determined by HPLC. Sixteen batches from different origins in China were collected to assess the similarities according to similarity evaluation for “chromatographic fingerprint of traditional Chinese medicine” (2012), and four kinds of decoction pieces were distinguished and compared by chemometric methods such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Results: The HPLC fingerprints of CCP nucleosides were established and the similarity was above 0.960. Six common peaks of uracil, adenine, hypoxanthine, uridine, inosine, and guanosine were identified. Among them, uracil, hypoxanthine, and inosine were different compounds, which can be used as a quality control indicator for identifying and distinguishing CCP pieces. Conclusion: The CCP nucleoside fingerprints established by the method are characterized by strong features and simple methods. The combination of six nucleosides can better control the quality, which has guiding significance and reference value for the identification and quality control of CCP.

20.
Chinese Pharmacological Bulletin ; (12): 833-839, 2019.
Article in Chinese | WPRIM | ID: wpr-857235

ABSTRACT

Aim: To evaluate the mouse model of hypertriglyceridemia (hTG) induced by schisandrin B (Sch B) using lipid metabolomics technology. Methods: Male ICR mice weighing 23 ~ 27 g were randomly divided into four groups: (1) mice fed with normal diet (ND group) (2) mice fed with ND and treated with Sch B(ND +Sch B group); (3) mice fed with high fat/fructose diet(HFFD group; fat, 10%; fructose, 10%; w/w), and (4) mice fed with HFFD and treated with Sch B (HFFD + Sch B group). Based on our previous research, Sch B at a single dose of 2 g · kg-1 was orally administered to the animals in the current study. Forty-eight hours later, serum samples were obtained from the orbital vein. Serum triglyceride (TG) and total cholesterol (TC) were analyzed by biochemical method. The metabolic fingerprint spectrum of serum in all groups were obtained and analyzed using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) method. The differences of metabolic spectra in every two groups were compared via the multivariate statistical methods. Results: Compared with ND group, three kinds (27 markers) of differential metabolites were identified in ND +Sch B group, including 18 TG, 7 phosphatidylcholine (PC), and 2 phosphatidylethano-lamine(PE). Compared with ND group, five kinds(27 markers) of differential metabolites were screened in HFFD group, including 6 sphingomyelin (SM), 13 PC, 2 cholesteryl ester(CE), 5 TG and 1 phosphati-dylinositol (PI). Compared with HFFD group, four kinds (25 markers) of differential metabolites were found in HFFD + Sch B group, involving 14 TG, 1 CE, 6 PC and 4 PE. Conclusion: These findings suggest that the animal model of hypertriglyceridemia established by Sch B involves the alteration of serum lipid metabolomics.

SELECTION OF CITATIONS
SEARCH DETAIL